SHARMA AND JURIE: EFFICIENT SVM WITH HISTOGRAM INTERSECTION KERNEL 1 A Novel Approach for Efficient SVM Classification with Histogram Intersection Kernel

نویسندگان

  • Gaurav Sharma
  • Frederic Jurie
چکیده

The kernel trick – commonly used in machine learning and computer vision – enables learning of non-linear decision functions without having to explicitly map the original data to a high dimensional space. However, at test time, it requires evaluating the kernel with each one of the support vectors, which is time consuming. In this paper, we propose a novel approach for learning non-linear SVM corresponding to the histogram intersection kernel without using the kernel trick. We formulate the exact non-linear problem in the original space and show how to perform classification directly in this space. The learnt classifier incorporates non-linearity while maintaining O(d) testing complexity (for d-dimensional input space), compared to O(d×Nsv) when using the kernel trick. We show that the SVM problem with histogram intersection kernel is quasi-convex in input space and outline an iterative algorithm to solve it. The proposed approach has been validated in experiments where it is compared with other linear SVM-based methods, showing that the proposed method achieves similar or better performance at lower computational and memory costs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Approach for Efficient SVM Classification with Histogram Intersection Kernel

The kernel trick – commonly used in machine learning and computer vision – enables learning of non-linear decision functions without having to explicitly map the original data to a high dimensional space. However, at test time, it requires evaluating the kernel with each one of the support vectors, which is time consuming. In this paper, we propose a novel approach for learning non-linear SVM c...

متن کامل

Some Faces are More Equal than Others: Hierarchical Organization for Accurate and Efficient Large-Scale Identity-Based Face Retrieval

This paper presents a novel method for hierarchically organizing large face databases, with application to efficient identity-based face retrieval. The method relies on metric learning with local binary pattern (LBP) features. On one hand, LBP features have proved to be highly resilient to various appearance changes due to illumination and contrast variations while being extremely efficient to ...

متن کامل

Local Higher-Order Statistics (LHS) for Texture Categorization and Facial Analysis

This paper proposes a new image representation for texture categorization and facial analysis, relying on the use of higher-order local differential statistics as features. In contrast with models based on the global structure of textures and faces, it has been shown recently that small local pixel pattern distributions can be highly discriminative. Motivated by such works, the proposed model e...

متن کامل

Local Higher-Order Statistics (LHS) describing images with statistics of local non-binarized pixel patterns

We propose a new image representation for texture categorization and facial analysis, relying on the use of higher-order local differential statistics as features. It has been recently shown that small local pixel pattern distributions can be highly discriminative while being extremely efficient to compute, which is in contrast to the models based on the global structure of images. Motivated by...

متن کامل

Learning discriminative spatial representation for image classification

Spatial Pyramid Representation (SPR) [7] introduces spatial layout information to the orderless bag-of-features (BoF) representation. SPR has become the standard and has been shown to perform competitively against more complex methods for incorporating spatial layout. In SPR the image is divided into regular grids. However, the grids are taken as uniform spatial partitions without any theoretic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013